
J .  Fluid Mech. (1996), vol. 322, p p .  81-107 
Copyright 0 1996 Cambridge University Press 

81 

Mixing driven by vertically variable forcing: an 
application to the case of Langmuir circulation 

By A N A N D  GNANADESIKANT 
Department of Physical Oceanography, Woods Hole Oceanographic Institution, MA 02543, USA 

(Received 30 January 1995 and in revised form 14 March 1996) 

Two-dimensional mixing driven by an instability mechanism which is concentrated 
near one of the boundaries is considered, with particular application to Langmuir 
circulations driven by a wave spectrum. The question of how to define the equivalent 
of the Rayleigh number is attacked using the energy balance equations and simple 
truncated models of the instability. Given a particular horizontal wavelength for the 
disturbance, the strength of the forcing on the cells, and thus the growth rate, is 
determined by a tradeoff between maximizing the depth-averaged forcing and 
maximizing the depth of penetration. As a result of this tradeoff, long-wavelength cells 
grow more slowly, but penetrate more deeply and have a larger equivalent Rayleigh 
number. At finite amplitude, these long-wavelength cells come to dominate the flow 
field. The depth of penetration of, and density transport accomplished by, Langmuir 
cells is considered as a function of the mean stratification and diffusion. An application 
to oceanic mixed layers is considered assuming the Mellor-Yamada 2i-level turbulence 
closure model to define the background level of turbulent mixing. For many realistic 
cases, Langmuir cells are predicted to dominate the vertical transport of momentum 
and density. 

1. Introduction 
Over the past century, much insight into the physics of mixing driven by buoyancy 

forces (Rayleigh-Benard convection and double-diffusive convection in particular) has 
been gained by considering the behaviour of the turbulent field as a function of the bulk 
Rayleigh number. As the Rayleigh number (essentially giving the ratio of the buoyant 
to diffusive forces) increases, the turbulence becomes more and more energetic, the 
vertical fluxes of all quantities increase, and occasionally large-scale flows can develop 
(Howard & Krishnamurti 1986). The Rayleigh number is easily defined when the initial 
gradients of all quantities do not vary with depth. However, in many environmental 
situations such is not the case. The question of how to define the Rayleigh number is 
taken up for one such case, that of Langmuir circulations driven by wave-current 
interaction. 

Langmuir circulations consist of helical counter-rotating vortices in the upper layer 
of oceans and lakes which are oriented at some small angle a: relative to the wind. The 
surface convergence zones are associated with enhanced concentrations of bubbles, 
rows of weed and debris, and jets with velocity in the alongcell direction (see Leibovich 
1983 for a review). The cells were first described in a quantitative sense by Langmuir 
(1938) who Theorized that they were the principal mechanism by which the mixed layer 
in ocean and lakes was maintained. 

t Present address: Program in Atmospheric and Oceanic Sciences, Princeton University, PO Box 
CN710 Princeton, NJ 08540, USA. email: alg@gfdl.gov. 
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In the 1970s, a series of papers (Craik 1970; Craik & Leibovich 1976; Leibovich 
1977a: Huang 1979) established a possible forcing mechanism for Langmuir cells 
involving interactions between surface gravity waves and the mean Eulerian shear. 
These equations (presented in detail later in this work) treat Langmuir cells as a sort 
of double-diffusive convection, where the mean Eulerian velocity is the destabilizing 
field and density acts as a stabilizing field. The mechanism works as follows. Horizontal 
perturbations in the Eulerian velocity are rotated into the plane of the cells by the 
Stokes drift shear associated with the surface gravity waves (figure la) .  The rate at 
which this tilting occurs is proportional to the Stokes drift shear. The vortices created 
by this interaction then act on the mean Eulerian shear to reinforce the horizontal 
perturbations (figure 16) in alongcell velocity. The rate at which this reinforcement 
occurs is proportional to the Eulerian shear. The growth rates associated with the 
Craik-Leibovich wave-current interaction mechanism thus go as the geometric mean 
of the Stokes drift shear and Eulerian shear. 

In order for observational oceanographers to evaluate whether this mechanism is 
important for driving Langmuir circulations, it is necessary to evaluate the strength 
of the wave-current interaction mechanism relative to the high ‘ background ’ turbulent 
mixing found within the mixed layer, i.e. to define the equivalent of a Rayleigh number. 
This is rendered difficult by two factors. (i) The background viscosity is not well known 
when mixing is strong and probably varies with depth. Because of the presence of a 
surface wave stirred layer, however, the mixing coefficient may vary by less than an 
order of magnitude over shallow mixed layers of less than 40 m (Terray et al. 1996). 
(ii) The Stokes drift and Eulerian shears are even more variable with depth. For one 
simple wave spectrum (that of Pierson & Moskowitz 1964) the Stokes drift shear goes 
to infinity as z-”‘ and decreases to near zero below depths of about 40 m, so that the 
strength of the wave-current interaction forcing varies from infinite to near-zero over 
a relatively shallow mixed layer. 

This paper starts with the approximation that the eddy viscosity and diffusivity 
associated with background turbulence are constant throughout the mixed layer. There 
are obvious shortcomings to this approach. Although in reality Langmuir cells and the 
background diffusion occupy different parts of the turbulence spectrum, it is difficult 
to state exactly where the separation between the large-scale and small-scale turbulence 
should be made. Additionally, it can be deceptive to treat the small-scale and large-scale 
turbulence as independent of each other, as will be discussed later in this paper. 
However, despite these limitations, one can still derive much useful insight from 
treating the turbulence as constant and focusing on how the vertical variation of Stokes 
drift and Eulerian shears affect the structure and development of Langmuir cells. The 
basic questions are: (i) Given a forcing mechanism whose strength is a function of 
depth, how does one define a ‘typical’ value for the forcing rate given cells that 
penetrate to a particular depth? (ii) Does the forcing rate fall off more quickly than the 
diffusion rate (so that the background diffusion can limit the depth of penetration) or 
is the reverse true? (iii) How do the typical forcing and diffusion rates determine the 
typical rate for overturning associated with finite-amplitude cells? (iv) Can Langmuir 
cells penetrate into stable stratification? How far into the stratification do they 
penetrate? 

Although this paper concentrates on a specific application to Langmuir circulation, 
with constant background diffusion, the general questions raised above can be applied 
to a number of problems of more general geophysical interest. Particular examples 
include convection with non-constant background diffusion (frequently found in 
atmospheric boundary layers), stellar and planetary-scale convection driven by an 
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FIGURE 1 .  Schematic of the wave-current interaction mechanism of Craik & Leibovich (1976) 
assumed herein to drive Langmuir circulation. 

internal heat source where the strength of gravity changes with distance from the centre 
of the body, and convection in cold freshwater lakes (where the temperature is 
< 4" C) driven by the deposition of solar radiation. 

The problem of how to define the characteristic rates and link them to the forcing 
is treated as follows. The background turbulence is assumed to set up an equilibrium 
velocity and density profile within a layer of depth D. Then Langmuir cells then grow 
upon this profile, altering the shear and stratification and replacing small-scale 
turbulence as the dominant transport mechanism over some portion of the layer. The 
initial profile, however, is important in that it still determines the characteristic rates. 
This approach is different from that of previous workers who either supposed that the 
water column was initially at rest (Leibovich 1977a; Leibovich & Paolucci 1981), that 
the Stokes drift shear was constant with depth (Cox & Leibovich 1993), or who 
neglected the effects of viscosity (Leibovich 1977 b). An additional difference between 
this and previous work is that the eddy Prandtl number is taken as 1. This is a more 
realistic assumption for turbulent boundary layers than taking the eddy Prandtl 
number as equal to the molecular Prandtl number (Leibovich & Paolucci 1981). The 
advantage of this approach is that it enables analysis of how the presence of cells 
should alter the equilibrium mixed layer. 

The structure of this paper is as follows. In $ 2  the equations of motion are 
introduced and methods of solving them using the energy balance equations are 
discussed. Section 3 considers the physics involved in setting the characteristic scales 
for forcing in linearly unstable cells. Section 4 extends this theory to finite-amplitude 
Langmuir cells and presents some result from finite-difference code runs linking the 
characteristic scales calculated from the background flow to the motions associated 
with finite-amplitude cells. Section 5 considers some implications of these results for 
mixed layers in oceans and lakes. Section 6 concludes this paper. 

2. Equations of motion and methods of solution 

2.1. The equations 
The scenario considered in this paper is shown in figure 2. The Langmuir cell axis is 
assumed to be aligned with the wind and waves, pointing in the +x-direction. The 
crosscell direction is the +y-direction and the z-axis points upwards. The cells are 
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Bubble Surface drifters 

FIGURE 2. Schematic of Langmuir Circulation as studied in this paper. For purposes 
cells are assumed to lie parallel with the wind (+x-direction). The cross-cell direction is 
and up is the +=-direction. 

of this paper, 
they direction 

assumed to be invariant in the x-direction. They are embedded within a layer of depth 
D, in which the mixing coefficients for density and velocity are taken to be constant. 

The equations of motion are taken from Gnanadesikan (1994). They consist of 
transport equations for alongcell vorticity, alongcell velocity, and density : 

all. - -v, - w ,  -- all. i-2 = V”, -- 
aY az 

P 7 
= -. 

Po Po 
k2 a4 g2p = -, w w  

In these equations k,, a,, and (T are the wavenumber, amplitude and frequency of the 
driving waves, v, is the eddy viscosity, N is the buoyancy frequency, us is the Stokes 
drift, t is the surface stress, and u* is the friction velocity. The script quantities are 
dimensional, with equations (1 g-i) giving the conversion to non-dimensional units. 
Equation (lj) defines the pressure gradient and stress terms. The wavecurrent 
interaction mechanism enters through the vortex forcing term (au/dy) (au,/az) in 
equation (1 a). This term represents the tipping of the relative vorticity associated with 
the current jets (au/dy) by the Stokes drift associated with the surface gravity waves 
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described in figure 1. These equations are quite similar to those presented by Leibovich 
(1977~) .  The main differences are a slightly different scaling for the alongcell velocity 
and that the diffusion coefficients for density and velocity are equal. The key non- 
dimensional numbers are the Langmuir number La and the Richardson number Ri 
which are measures of the strength of diffusion and stratification respectively.? At the 
upper surface (z = 0) the stress is set by the wind stress, while at the bottom of the layer 
( z  = - D )  the shears and thus the viscous stress are set equal to zero: 

a11 

La21  = u i ,  -1 = a1,=, = SzJ,=-, = 0. (2a ,  b)  
sz *=(I a- z=-, 

The latter condition has been shown to be a useful approximation by Weller (1981) 
who demonstrated that except at near-inertial frequencies, the effect of the wind stress 
does not penetrate deeply into the main thermocline. 

In the absence of Langmuir cells, the equilibrium velocity profile is given by 

(z + D y  
U(-) = u;- 

2D (3) 

where C is an undetermined constant which can be set equal to zero without altering 
the fundamental dynamics. In order to obtain a constant solution, the pressure 
gradient which is required to balance the wind stress is dp/ax = u",D (note that all 
quantities are non-dimensional). 

The boundary conditions on density are chosen so as to allow the water below the 
layer of strong mixing to serve as a reservoir of dense water, while accounting for a 
density flux through the upper surface 

p = D ,  z = - D ,  ( 4 4  

- 1, z = 0. aP 
dz 
- _ _  

Note again that the quantities are non-dimensional. In dimensional terms, (4a)  will 
read p = po D/g .  

The wave field is specified in terms of the Stokes drift. Two Stokes drift profiles are 
used to force the cells, one corresponding to a monochromatic wave train, the other 
corresponding to a Pierson-Moskowitz spectrum : 

u&z) = exp (22) (monochromatic waves), ( 5 a )  

us(-) = Jm :exp ( - 1.25;) exp (2f 'z)  df (P-M spectrud\); 
f = O f  

wherefis a dummy variable denoting the wave frequency. For the Pierson-Moskowitz 
spectrum, k, and are taken from the wavenumber and frequency at the spectral peak 
and the wave amplitude a, is the total r.m.s. amplitude. 

The scenario defined by the above equations is not accurate for deep open-ocean 
mixed layers, where the Coriolis force rather than a pressure gradient balances the 
surface momentum input. When this is the case, the Eulerian shear is not parallel with 
the Stokes drift, and so the cells do not line up with the wind exactly. The effects of 
Coriolis forces on the instability are considered in Gnanadesikan (1994) and 

t The definition of La proposed here differs from that of Leibovich (1977a), but conforms to that 
of Huang (1979) and Gnanadesikan (1994). It allows for a clearer separation between the effects of 
changing the wind stress, Stokes drift, and the background eddy viscosity. 
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Gnanadesikan & Weller (1995). Additionally, the steady-state case for (1 c) with 
boundary conditions (4a, b )  is one in which the density flux is constant throughout the 
layer, something which is only approximately true on long (seasonal) timescales rather 
than on the much shorter ones associated with Langmuir cells. 

An additional weakness of the idealization used in this paper is that the mixing 
coefficient, La, is assumed to be constant throughout the mixed layer. This is unlikely 
to be the case. When comparisons are made between the results presented here and real 
oceanic mixed layers, the Langmuir number should be thought of as setting the overall 
level of mixing, not the exact value at any given depth. It should be noted however, that 
a constant eddy viscosity is predicted by Mellor-Yamada-type models which have been 
applied to the ocean (Klein & Coste 1984) in which a constant turbulent lengthscale is 
assumed. In such models, the turbulent diffusion generally scales as the friction velocity 
multiplied by some fraction of the mixed layer depth. Such a formulation will be used 
later in this paper. Previous work on Langmuir cells by a large number of investigators 
(Leibovich 1977a; Leibovich & Paolucci 1981 ; Leibovich, Lele & Moroz 1989; Cox & 
Leibovich 1993 ; Gnanadesikan 1994) has also assumed constant turbulent diffusivity 
and viscosity. Finally, although the scenario here is idealized, the basic principle of 
evaluating the degree of instability by defining an averaged Stokes drift shear, Eulerian 
shear, and stratification is one that can be extended to real cases. 

2.2. Solving the equations for unstable growth 
Leibovich (1977b) solved for the instability of the above equations in the absence of 
viscosity. He showed that given an initial profile of velocity U(z) ,  Stokes drift u,(z) and 
buoyancy frequency P ( z )  the maximum growth rate is given by 

where the maximum is taken over depths. Essentially, ycLL (referred to hereafter as the 
local Craik-Leibovich instability parameter) represents the strength of the wavewxrrent 
interaction mechanism driving the cells. This formulation yields some useful insights 
into whether or not stratification can shut off Langmuir cells (obviously if N > ytLL 
everywhere it can). It is not sufficient to give a good understanding of the importance 
of wave-current interaction in the field, however, for three main reasons. (i) In the field 
the strength of the wave-current interaction mechanism needs to be evaluated 
separately from the background turbulent diffusion driven by such processes as 
Kelvin-Helmholtz instability which are responsible for setting up the background 
shear and stratification. (ii) When the waves are represented by a spectrum, ymaS as 
predicted by (6) is very sensitive to the Stokes drift shear right at z = 0. This quantity 
is dominated by high-frequency waves which are not generally measured. For a 
Pierson-Moskowitz spectrum ymax is infinite, and so (6) yields no information about 
how stratification affects the cells. (iii) One question of interest is the depth to which 
the cells mix. It is unclear from (6) alone whether to expect that this depth is that at 
which y:LL becomes negative, or whether the high shear near the surface can drive 
penetrative motions into the stratified thermocline below. 

As will be shown below, significant understanding can be gained by replacing the 
local Craik-Leibovich instability parameter with one in which the local Eulerian shear, 
Stokes drift shear and stratification are replaced by weighted averages over the depth 
of penetration. The depth-weighted parameterization does a much better job at 
predicting the mixing depth and the strength of overturning, and also in evaluating 
whether or not stratification and viscosity are capable of capping off the cells. 
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The key to understanding the solutions presented in this paper is the use of balance 
equations for the first and second moments of momentum and density. The energy 
balance equations may be derived by letting 

u = U’(X, z ,  t )  + U(z, t ) ,  2, = d(x, z ,  t )  + V(z, t) ,  (7a ,  b )  

(7c ,  d )  

The equations for the variance in crosscell velocity, alongcell velocity, and density are 
then 

M’ = d ( x ,  z ,  t ) ,  p = p’(z, t )  + P(z ,  t ) .  

The integrals on the right-hand side of (8 a)  represent the shear production, the energy 
flux generated by the wave spinning up the vortices in the s-direction, the buoyancy 
flux, and the dissipation respectively. The energy flux introduced by the wave-current 
interaction is hereafter referred to as the Stokes production and represents a transfer of 
energy from the wave field to the Langmuir cells. 

In order to analyse how unstable modes grow in these equations it is necessary to 
assume that the cells can be approximated by some shape function (denoted by a tilde) 
multiplied by some amplitude. Then for generality : 

(9 a-c) u’ = u1 @) cos (kx) eyt, p’ = p1 P(z) cos (kx) ey‘, $‘ = 9, $(z) sin ( k x )  eyt, 

If the shape functions are expanded in a Fourier series, the resulting series may be 
truncated and inserted into the momentum equations and a standard Galerkin 
expansion may be derived (Gottleib & Orzsag 1977). Once this is done, the entire 
instability problem may be cast as a linear eigenvalue problem. Details of this 
procedure are given in Gnanadesikan & Weller (1 995). 

In order to analyse the results of the Galerkin expansion, it is extremely useful to 
consider the energy balance of the growing cells. This can be done as follows. Let Uo 
and Po be the initial profiles of alongcell velocity and density respectively and assume 
that the mean crosscell velocity Vo(z) is zero. Then the crosscell energy equation 
becomes 
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The various components of this equation can be broken down into terms with physical 
significance. For compactness, the following definitions are made : 

(1 1 c, 4 
Substituting these terms into (10) and dividing out common terms yields 

( y + L a K $ / k i ) $ ,  = kes,/k$z:,+ RiBk/k;p,. (12)  

The physical significance of the various terms can now be seen more clearly: kfisz /k;  
gives the rate at which the wave-current interaction takes a velocity perturbation and 
rotates it so that it becomes a streamfunction Qerturbation of a given shape. Note that 
because w' - i3fli3.x - &(z), the product U(z) $(z) gives the shape of the nonlinear 
momentum transport associated with the cells. Thus esz can be interpreted as a 
weighted average of the Stokes drift shear, where the weighting function depends on 
the shape of the vertical eddy momentum transport. 

Other terms in equation (12) have physical significance as well. K$ is the effective 
wavenumber for the damping of the vorticity. k,  is the effective wavenumber which 
gives the relationship between the streamfunction and vorticity fields. La K $ / k i  is thus 
the rate at which cells with a given shape are damped out by the background turbulence 
field. Ripk/k$  is the rate at which a density perturbation with shape p(z)  eikx produces 
a streamfunction perturbation of shape &(z) eikr. 

In order to see how these terms combine to produce a growth rate, the other variance 
equations must be analysed as well. Then if for compactness the following definitions 
are made: 

k i  = 2LD{(3 '+k2@}dz ,  k; = 2/:D{(g)l+k2p2}d~ ( 1 3 ~ ,  d )  

the following equations for alongcell velocity and density may also be obtained: 

(y+Lak2,)u1 = k 6 z $ l ,  ( y+Lak; )p ,  = kpoz$l. (144  b) 

In a parallel to the equation for the streamfunction, (13a) defines a depth-averaged 
Eulerian shear; k ,  and k, are the characteristic wavenumbers for damping the velocity 
and density perturbations. The depth-averaged Craik-Leibovich instability parameter 
ycL and depth-averaged buoyancy frequency I? may be defined as 

y:L = cz csz,  I?' = Ri,9poz. ( 1 5 ~ ~  b) 

Substituting into ( 1  1) then yields the following, cubic equation for y :  

(y  + La K$ /k$)  ( y  + La k2,) (y + La ki)  = k2 y&/k i ( y+  La ki)  + k2@'/ki(y  + La k2,). 
(16) 

The various terms in equation (16) are controlled by the spatial structure of the 
Langmuir cells. In order to determine the growth rate of the fastest growing mode 
given a particular set of (k ,  La, Ri, D) it is necessary to determine the vertical structure 
function. 
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FIGURE 3. Variability in the structure function. Structure functions are calculated using Galerkin code 
with 40 modes and normalized so that the maximum is 1. The solid line is the streamfunction 
perturbation, the dashed line the velocity perturbation and the chaindot line the density perturbation. 
(a) A case where the cells do not feel the bottom, La = 0.025, Ri = 0.25, L = 2.  (b)  A case where the 
cells do feel the bottom, La = 0.2, Ri = 0.05, L = 16. 

As noted above, the shape functions @), F ( z )  and &(z) can be approximated using 
a Galerkin approximation. This method is asymptotically valid as the number of terms 
N in the Fourier series becomes large. All of the results presented here are for N = 40, 
a value for which the growth rates converged. The solutions yielded by the Galerkin 
code fall into two general classes of interest, illustrated in figure 3. In the first class 
(figure 3a), the cells do not penetrate over the entire domain, and the structure 
functions for density and velocity perturbations are very similar. This is the case when 
the stratification is significant or the cell wavelength is much smaller than the layer 
depth. 

When particular analytic forms are assumed for the cell structure, an analytic 
solution may be found for (16). This is extremely attractive, since it permits simplified 
analysis of the physics governing the cell structure and growth rate. When considering 
cases where the cells do not penetrate over the entire domain, the structure functions 
shown in figure 3(a) may be approximated by letting 

- 1 .  
@ = sin (nz/D’), z > - D’, 

* 1 
U, @ = p cos (TCZ/~D’) ,  z > - D’, 

&, 6,p = 0, z < - D’, 
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where D’ defines the depth over which the cells penetrate. This truncation will be 
referred to as T1.  In the Galerkin code D’ will be taken as 2D,,,, where D,,, is the 
depth at which l@(z)l (and hence the vertical velocity) is maximized. 

In a second class of cases, shown in figure 3(b) ,  the cells penetrate over the entire 
depth of the layer. For these cases, the velocity perturbation has very little structure 
with depth. In such cases the velocity and streamfunction perturbations may be 
approximated as follows : 

This truncation, which will be referred to as T2, is of particular interest for long- 
wavelength cells, cases where the stratification is very weak, or cases when La is large. 
These truncations are used as tools for understanding the vertical structure both of the 
linearly unstable and finite-amplitude cells. 

2.3. Solving the equations for nonlinear equilibrium 

As the cells grow, they modify the background velocity profile until a balance is 
achieved. A schematic of this equilibrium is shown in figure 4. Slow-moving water from 
the interior is upwelled and accelerated by the wind, creating a velocity jet. The 
strength of the jet is proportional to the time the water spends at the surface. Suppose 
there is some equilibrium value at which the torque caused by the waves refracting 
through the jet balances the viscous deceleration due to the background diffusion. If 
the cells spin faster than this equilibrium value, the wind will not have time to 
accelerate the water at the surface, the surface jet will be weaker, and the cells will be 
spun down by the background turbulence. If the cells are spun more slowly than this 
equilibrium value, however, the jet will be larger than it is at equilibrium, and the cells 
will be accelerated by the wavecurrent interaction mechanism. 

The cell amplitude at equilibrium can be analysed (following Malkus & Veronis 
1958) using the energy balance equations. At equilibrium, the time-varying terms in the 
energy balance equations are zero. Additionally, the momentum and density equations 
may be integrated to yield the following balance equations : 

( 19 a-c) 

These balance equations may then be used to substitute for the mean shear terms in 
equation (7). If the following definitions are made: 

a ,  = 2 LD (&(z) &) )z  dz, ap = 2 LD ( & ( ~ ) j j ( z ) ) ~  dz, (20 a, b)  

then the equations for eddy kinetic energy and density variance become 

Given a fixed cell structure, these equations can be solved for the amplitude of the 
streamfunction, velocity, and density perturbation. The method used here (which is 
described in more detail in Gnanadesikan 1994) is to fix the wavenumber k and choose 
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FIGURE 4. Equilibration of Langmuir cells. When cell vortices (shown by thin lines) are much weaker 
than equilibrium (a), a particle brought to the surface and accelerated by the wind spends a long time 
at the surface. This means that it spends much longer being accelerated by the wind and that the 
along-cell jet (shown by bold lines) can grow quite strong. In such a case (au,/az) (&lay) will be very 
large, and the torque on the cell exerted by the wave-current interaction mechanism will be larger 
than the diffusive torque LaSZ/DZ. When the cell vortex is much stronger than equilibrium (b)  a 
particle spends very little time at the surface. In such a case the along-cell jet will be very weak and 
thus (au,/az) (au/dy) < LaS2/D2, so the cells will decay diffusively. 

a cell structure given some La, for y(k,  La,,D) = 0. (The classical method of picking 
the wavenumber as well as the structure from the marginally unstable case does not 
work here, since marginal instability occurs at infinite wavenumber.) The resulting 
solution is analogous to the first-order weakly nonlinear solution of Malkus & Veronis 
(1958). This method is used in $4 to consider the modification of the mean structure 
by the cells. The results are compared to direct integrations of the equations of motion 
made using a finite-difference code. The details of this code are found in Gnanadesikan 
(1994). The overall approach follows that of Roache (1977). 

3. Physics of linearly unstable Langmuir circulations 
3.1. Unstratijied instability: the link between depth of penetration and cell spacing 

The growth rate of unstable Langmuir cells is closely linked to their depth of 
penetration. This can be seen in figures 5(a)  and 5(c) where y(k ,  La, D, u*) and 
D,,,(k, La,  D, u*) computed using the Galerkin method are shown as a function of k 
and La. A consistent pattern emerges in which smaller depths of penetration 
correspond to larger growth rates. These small penetration depths occur at small 
wavelengths and small values of Langmuir number. Increasing the Langmuir number 
decreases the growth rate and increases the depth of penetration. The truncated model 
TI introduced in the previous section reproduces this qualitative behaviour (figures 5 b 
and 5 d ) .  Indeed, it captures much of the quantitative behaviour as well. The growth 
rates are in general underestimated by 10-1 5 % and the depth at which the maximum 
velocity occurs is overestimated somewhat. The overall pattern here is seen for other 
layer depths and Stokes drift profiles (Gnanadesikan 1994). One interesting difference 
is that when the Stokes drift is less strongly peaked at the surface, truncation T1 does 
an even better job of reproducing the growth rate (as will be demonstrated later in this 

Because the wave-current interaction mechanism is strongest near the upper 
boundary, it is no surprise that the magnitude of the forcing felt by the cells (and hence 
their growth rate) is a function of the depth over which they penetrate. The question 
of interest is what governs the depth of penetration. Why, in particular, is the depth 
of penetration such a strong function of horizontal wavenumber (in contrast to 
Rayleigh-Benard convection where the most unstable cells always penetrate over the 
entire water column)? 

paper). 
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FIGURE 5. Growth rates and depth of maximum vertical velocity DmaX of the most unstable mode as 
a function of non-dimensional horizontal wavenumber (normalized by the wavenumber of the surface 
gravity waves at the peak of the spectrum) and Langmuir number assuming a Pierson-Moskowitz 
spectrum, a layer depth of 2 and a surface Eulerian shear of 1. Growth rates are calculated from the 
full Galerkin code with 40 modes and using truncation T1. (a) Growth rate: full Galerkin code. (b)  
Growth rate: truncation T1. (c) D,,,: full Galerkin code. ( d )  D,,,: truncation T1. 

An answer may be found by considering the solution to (16). When density 
stratification plays no role in the equations, the growth rate is given by 

The necessary condition for instability is 

A better understanding of what the terms in (22) mean may be gained by substituting 
a truncated representation of the unstable modes. Because the truncated model T1 
captures the dependence on Langmuir number and horizontal wavenumber, it is used 
below to explore the linkage between cell structure and cell penetration. When the 
shape functions for velocity and density are given by truncation T1 (equation 17a, b),  
the growth rate as a function of D’ is then 

yT’(D’) = - La(k2 + ( 5 ~ / 8 D ’ ) ~ )  
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where 

x l:D 3 sin (.nz/D’) cos (xz/2D’) dz, (25 a) az 
ydi f f l  = La(k2 + x 2 / D ” )  (k2  + 7~~/4D’~/k)~’~. (25 6 )  

The Craik-Leibovich instability parameter ycLl gives a measure of the strength of how 
strongly the cells are driven by waveecurrent interaction, analogous to the unstable 
stratification in the Rayleigh-Benard convection. The characteristic diffusive rate ydiffl 
indicates the effectiveness of small-scale turbulence at damping the cells. The necessary 
condition for instability is that the Craik-Leibovich Rayleigh number be supercritical 

The growth rate and structure in the absence of stratification are controlled by a 
tradeoff between forcing, cell shape, and diffusion. The first part of this tradeoff may 
be understood by considering the case of inviscid or nearly inviscid instability (as 
La + 0). In such cases the growth rate of the fastest growing mode as a function of 
wavenumber is 

(Rat,, = YL/Y&fl ’ 1). 

The growth rate is than a combination of two factors, one that depends only on the cell 
geometry and one that depends on the Stokes drift and Eulerian shear profiles. The 
tradeoff between the two may be understood as follows. Let a‘, v’, and u’ be 
characteristic perturbation velocities in the alongcell horizontal, crosscell horizontal 
and vertical directions respectively. From continuity k . ~ ’  + xtch’/D’ = 0. Then supposing 
u‘, Z A ’  and U’ to all be growing as exp(yt) the crosscell energy equation yields 

-(p‘2+f&‘2) a - ik;L2+ ~ l ) ~ ’ ? t c ~ ’  - U‘W‘ x Stokes drift shear, 
at at 

(27a) 

(27 b) -u‘2 a - a , a  -a‘ - &’LO’ x Eulerian shear. 
at at 

These equations may be combined as follows : 

a 2  dtc” 
-a‘ = ~ x Eulerian shear 
at2 at 

Eulerian shear x Stokes drift shear x 

so that 

The significance of the two components of the right-hand side of (29) can be 
understood by considering (27a, 6). Maximizing ycL optimizes the rate of energy 
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release resulting from a given stress U'UL'. If ycL is small, the Stokes drift shears and 
Eulerian shears are small so that for a given U'U' the energy release rate is relatively 
small. If it is large, a given stress results in rapid release of energy. Maximizing kD' 
optimizes the eficiency of the released energy at increasing the stress. If kD' is small, 
most of the released energy in the crosscell direction goes into horizontal motions 
which do not directly reinforce the stress. If kD' is large, most of the released energy 
in the crosscell direction goes into vertical motions, which directly reinforce u'u'. 

The competition between maximizing the efficiency and maximizing the forcing leads 
to the observed relationship between cell penetration and horizontal wavelength. For 
a Pierson-Moskowitz spectrum, as D' + 0, ycL + l/D'-1'4. However, the geometric 
factor goes to zero as D', overwhelming the concentration of forcing so that as D' --f 0, 
y+ 0. The growth rate goes to zero more quickly for less strongly surface-intensified 
profiles, such as that given by a monochromatic wave train. However, given a fixed k, 
as D' becomes much larger than l / k  the efficiency asymptotes to unity while the forcing 
decreases. This means that for fixed k ,  as D' 4 00, y ---f 0. Thus for some intermediate 
value of D' (of order l / k )  the inviscid growth rate is maximized. At wavelengths which 
do not feel the bottom, then, the tradeoff between maximizing the forcing and 
maximizing its efficiency leads to a depth of penetration with a similar scale to the 
wavelength. 

The presence of diffusion introduces a new tradeoff into the equation. As D' gets very 
small, the diffusive decay rate, which for small D' goes as La/D'2, gets very large and 
can overwhelm the Craik-Leibovich instability parameter in equation (24). Mini- 
mizing the diffusive decay scale favours cells with a deeper penetration. The growth 
rate decreases as La increases for two reasons: greater diffusive damping and a 
decreased ability to take advantage of the higher shears near the surface. 

Although truncation T1 does predict the cell structure at moderate to large k,  it does 
not capture the structure at large La or small k (figure 3b). This is because cells which 
penetrate over the entire domain feel the bottom boundary. Because in the present case 
both the bottom and upper boundaries are fixed-stress boundaries, the effect of 
diffusion is to smooth out any vertical structure in the velocity perturbation. In such 
cases truncation T2 is more representative of the velocity structure than truncation T1. 
When it is substituted into the energy balance equations, the resulting growth rate is 

where 
2 au, 

y2CL2 = o2 lD a= sin (nz /D)  dz 

y d i f f z  = La (k2 + n2/D2) .  (314  

The necessary condition for instability is then 

As k becomes very small yd i f f z  decreases. But since ycLz is constant, Ra,, increases as 
k + 0. This is in contrast to RacLl, which becomes less than 1 as k becomes very small. 
Marginal instability occurs when k = 0. 

The fact that the strength of the forcing and damping depend so strongly on the 
horizontal wavelength L = l / k  means that the Craik-Leibovich Rayleigh number also 
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FIGURE 6. The dependence of the growth rate and Craik-Leibovich Rayleigh number on the cross-cell 
wavelength. All cases assume La = 0.035, waves given by a Pierson-Moskowitz spectrum, a layer 
depth of 2 and a surface Eulerian shear of 1. Solid lines are calculated using the full Galerkin code 
with 40 modes. Dashed lines are calculated using truncation TI and chain-dotted lines are calculated 
using truncation T2. ( a )  Growth rate; ( 6 )  Craik-Leibovich Rayleigh number. 

depends strongly on L. This is illustrated in figure 6. An important point is that Ra,, 
and y have different dependence on wavelength. For the particular parameters chosen 
in figure 6, y is maximized for cells whose wavelength is roughly the same as the depth 
of the fluid layer. However, these cells are not very strongly supercritical, with Ra,, 
being about 5. As the wavelength increases, y decreases steadily while Ra,, exhibits 
two maxima, one at wavelengths around 8 (4 times longer than those associated with 
the fastest growing mode) and another at very long wavelengths. Truncation T1 does 
a good job in approximating Ra,, for wavelengths smaller than about 12, while T2 
captures the behaviour at long wavelength. The different behaviour at different 
wavelengths reflects the changing structure of the unstable cells. The implications of 
this fact for cells at equilibrium are considered in $4. 

As L, D' become small 
Ra,, + D'5i2 -0 (33)  

so that the cells become subcritical. This can be seen by the high-wavenumber 
behaviour in figure 6. Diffusion is stronger than the integrable singularity associated 
with the Pierson-Moskowitz spectrum and leads to a high-wavenumber cutoff. 

The relationship between cell structure and wavelength has important implications 
for the range of wave frequencies which must be measured in order to accurately 
characterize the cells. An important point is that the Stokes drift shear right at the 
surface is not the important shear for driving Langmuir cells. In general, cells which 
could feel such shears are either extremely inefficient (equation (28)), or damped out by 
diffusion (equation (33 ) ) .  Rather, the most important shears are those which contribute 
to the energy balance of the cells, those at depths where the cells take over the 
momentum balance. A measure of where the important Stokes drift shears occur as a 
function of depth of penetration is the depth at which the local Stokes drift shear du,/c?z 
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FIGURE 7. Non-dimensional depth at which the depth-averaged Stokes drift shear from truncation T1 
equals the local Stokes drift shear. Depths are non-dimensionalized by the inverse wavenumber of the 
wave at the peak of the spectrum (for 10 s waves 1 unit of depth is about 25 m). + , Monochromatic 
waves; 0, Pierson-Moskowitz spectrum. Note that the ‘typical’ shear occurs at about 1/3 the depth 
of Penetration. 

is equivalent to the depth-averaged Stokes drift shear f iszl .  Figure 7 shows this depth 
for two different wave spectra given different penetration depths for the cells. Over 
most of the range of penetration depths, the ‘typical’ Stokes drift shear responsible for 
driving the cells occurs at about 1/3 the cell penetration depth. Since observational 
oceanographers are primarily interested in cells with penetration scales of at least a few 
metres, this implies that the important Stokes drift shears are at least 0.5-1 m away 
from the surface. Waves with frequencies greater than 1 Hz will not contribute 
significantly to such shears. Thus measurements of wave height up to frequencies of 
about 1 Hz are sufficient for accurate characterization of Ra,, on scales comparable 
to the mixed layer. 

A question of similar interest to observational oceanographers is whether the cells 
are capable of penetrating very deep mixed layers. Figure 4 suggests that they are. 
When I lk  and D’ become large, assuming exponential decay for the Stokes drift shear, 

ycL  - l / D ’ ,  Ru,, - 0”. (34a, 4 
Of course, as D‘ reaches an upper limit of D and the cells become very long, the 
Rayleigh number asymptotes to a value close to that given by truncation T2. In very 
deep mixed layers, however, (34) implies that long-wavelength deeply penetrating cells 
will be more strongly supercritical even though they may have smaller growth rates. 
The exponential falloff of the Stokes drift is not strong enough to limit the growth of 
the cells. 

In summary, analysis of the energy balance of linearly unstable unstratified 
Langmuir cells driven by vertically varying Stokes drift shears reveals the following. (i) 
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The growth rate and cell structure are closely linked. Cells with long wavelengths grow 
more slowly than the fastest growing mode, but these longer cells penetrate more 
deeply into the water column and are more strongly supercritical. (ii) The important 
Stokes drift shears for driving Eulerian cells occur at some finite fraction of the depth 
of penetration, not right at the surface. This means that only that portion of the wave 
spectrum responsible for creating such shears need be measured in the field. If the 
spectrum has a slope of cP4, essentially all wavelengths below l /k  will contribute 
equally, whereas for steeper spectral slopes the peak of the spectrum will be more 
important. (iii) The exponential falloff in the Stokes drift shear is not sufficient to limit 
deep penetration of the cells in a mathematical sense. 

3.2. StratiJied Craik-Leibouich instabilitj, : how strattjication limits the depth of 
penetration 

In the examples considered in the preceding sub-section, the depth-averaged forcing 
was always positive. In the presence of stratification this is not always the case. 
Stratification opposes the penetration of cells (Lele 1985; Gnanadesikan 1994; Li & 
Garrett 1995) and can shut off their growth altogether. A sufficient condition for 
instability to occur in the presence of stratification may be derived by requiring the 
constant term in (16) be greater than zero. This occurs when the stratzjied 
Craik-Leibouich instability parameter 

is larger than the diffusive decay rate 

k I C  2 
Ra,,, = Y C L S  > 1, Ydiff = L a y ’ ,  

Y d i f f  

where Ra,L,y is the stratified Craik-Leibovich Rayleigh number. If the structure 
functions are given by truncation TI, k&/kz = 1 and ( 16) has a simple analytic solution. 
The growth rate of the most unstable mode as La becomes small goes to 

Note the parallel between the depth-averaged Craik-Leibovich instability parameter 
and the local parameter derived by Langmuir (1977 b)  shown in (6) .  Figure 8 shows the 
local Craik-Leibovich instability parameter from (6) and the stratified Craik-Leibovich 
instability parameter from (35) assuming a monochromatic wave train, moderate 
stratification, and structure functions given by truncation T1. The local instability 
parameter becomes negative when D’ = 0.6 while the depth-averaged version only 
becomes negative when D’ is approximately 2.5. Normalized density transports (defined 
as &)&) using the structure functions given by the instability code) are shown for 
two cases (figure 8 b). In the case with small wavelength and Langmuir number, the 
linearly unstable cells transport density only over depths where the local instability 
parameter is positive. For large La and wavelength, however, the cells penetrate much 
more deeply and the density transport is large at depths where the local instability 
parameter is negative. Unstable Langmuir cells are capable of penetrating to depths 
which are much greater than the local instability parameter would predict. As 
demonstrated later in this paper, the depth-averaged instability parameter also 
provides a much better predictor of the depth of penetration of finite-amplitude cells. 
As will also be shown later, finite-difference code runs which depict the structure of 
fully developed cells reproduce this behaviour. 
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FIGURE 8. Stratified Langmuir cell instability. Case shown assumes monochromatic waves, a surface 
Eulerian shear of 1, and Ri = 0.25. (a) Solid line shows the local Craik-Leibovich instability 
parameter from (7) of Leibovich (1977 b). Dashed line shows the depth-averaged Craik-Leibovich 
instability parameter from equation (35). Note that the depth-averaged parameter becomes negative 
much deeper in the water column. (b )  Normalized density transport carried by linearly unstable cells 
for two parameter settings. The solid line is for short-wavelength cells which are not strongly damped 
(I, = 2, La = 0.001). The dashed line is for long-wavelength cells subject to more diffusion which 
therefore penetrate much more deeply into the water column ( L  = 16, La = 0.05). 

The stratified Craik-Leibovich Rayleigh number and growth rate have a dependence 
on wavelength similar to the unstratified case. Figure 9 shows this dependence for the 
case in figure 7 given La  = 0.025. The maximum instability occurs at small wavelengths 
(1-2), while the Rayleigh number shows two maxima, one at wavelengths of about 8 
and the other at very long wavelengths. The truncated model reproduces both the 
growth rate and the Rayleigh number for a wide range of wavelengths. As in the 
unstratified case, the boundary conditions at long wavelength can play an important 
role in determining the structure of the instability. When, as is the case in this study, 
the destabilizing (velocity) perturbation is less strongly damped than the stabilizing 
(density) perturbation, the cells can be unstable even though the local instability 
parameter is negative. The significance of this result for real oceanic cases should not 
be overemphasized, however, since it occurs for cells which have much longer 
wavelengths than are commonly seen in the field. The fact that the Rayleigh number 
asymptotes to the unstratified result is a result of the idealization of the boundary 
conditions, which do not represent the real ocean. Finally, as will be seen in the 
following section, the cells with large Ra,,, may take unrealistically long times to 
develop. 
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FIGURE 9. The dependence of the growth rate and stratified Craik-Leibovich Rayleigh number on the 
cross-cell wavelength. Afl cases assume La = 0.025, monochromatic waves, a layer depth of 4 and a 
surface Eulerian shear of 1. Solid lines are calculated using the Galerkin code with 40 modes. Dashed 
lines are calculated using truncation T1. (a)  Growth rate, (b )  Craik-Leibovich Rayleigh number. 

4. Finite-amplitude Langmuir cells 
The Craik-Leibovich Rayleigh number based on the cell structure is useful for 

determining whether cells with such a structure grow. It can also serve as a measure of 
whether the cells replace small-scale diffusion as the dominant transport mechanism for 
velocity and density within the mixed layer. This can be seen by considering the 
solution of equations (21) when the approximation is made that the density and 
alongcell velocity perturbations have an identical structure. In this case the solution is 
given by 

The vertical transport of momentum and density accomplished by the cells is then 
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FIGURE 10. Finite-amplitude Langmuir cells. Cases shown here assume (as in figure 4), La = 0.025, 
waves given by a Pierson-Moskowitz spectrum, a layer depth of 2 and a surface Eulerian shear of 1. 
For 10 s waves with an amplitude of 1 m, 88 time units is 1 day and one length unit is 25 m. For 
8 s waves, 240 time units is 1 day, and one length unit is 16 m. (a )  Perturbation streamfunction, 
T = 4 (contour interval = 0.05). (b)  Perturbation streamfunction, T = 40 (contour interval 0.1). (c) 
Perturbation streamfunction T = 400 (contour interval = 0.1). (d) Predicted streamfunction 
amplitude using finite-amplitude theory (solid) and modelled streamfunction (+) at T = 400. (e) 
Predicted mean along-cell velocity (solid) from finite-amplitude theory (solid) and model ( + ) at 
T = 400. Initial condition is shown by chain-dotted line. 

Then if Ra,,, % 1 

Recalling the definitions of a,, and f i z  it can be seen that when the Craik-Leibovich 
Rayleigh number is large, the cells take over that part of the vertical transport of 
momentum and density which projects on the nonlinear stress profile of the finite- 
amplitude cells. Insofar as this stress profile has a shape similar to that associated with 
the linearly unstable cells, Ra,,, is a diagnostic not only of the instability of a water 
column to cells, but of the ability of the cells to replace small-scale diffusion as the 
dominant mechanism for vertical transport of both momentum and density. 

Because both the depth of penetration and Ra,,, depend on the horizontal 
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FIGURE 11. Stratified finite-amplitude Langmuir cells. Cases shown here assume (as in figure 9) 
monochromatic waves. La = 0.025, D = 4, Ri = 0.25, and a surface Eulerian shear of 1. (a) 
Perturbation streamfunction, T = 160. (b) Perturbation streamfunction, T = 800. (c) Mean 
(horizontally averaged) along-cell velocity. Chain-dot line is initial condition; +, model at T = 160; 
0, model at T = 800. The dashed line is the prediction from finite-amplitude theory. ( d )  Same as (c) 
but for mean density. (e) Same as (c) but for perturbation streamfunction amplitude. 

wavenumber, it is extremely important to determine which wavenumbers dominate the 
solution after finite time. Figure 10 shows the perturbation streamfunction field for the 
scenario shown in figure 6. Initially, the field is dominated by cells with a spacing which 
is about twice that of the most unstable mode (these cells have a growth rate, however, 
only slightly smaller than the most unstable mode). As time evolves, the spacing 
increases until only one pair of cells is seen in the domain. Similar results were reported 
by Li & Garrett (1993). 

One reason for this evolution in cell size can be understood by considering the 
different dependence on wavelength of growth rate, depth of penetration and Ra,,. 
Initially, small-wavelength cells with large growth rates dominate the flowfield. 
However, because these cells do not penetrate very deeply and have smaller Ra,,, they 
do not substantially modify the mean velocity profile, which is still unstable to longer- 
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wavelength cells. Consider the effect of a cell with Ra,, = 2 upon the mean velocity 
profile. From ( 3 8 a )  it can be seen that such a cell will remove only 50% of the mean 
shear which projects upon the shape function fi&. Supposing longer-wavelength cells 
to have identical shape function f ig (something which will not be true in general), the 
effect of the shear on the growth of these cells will be reduced by 50%. By replacing 
the depth-averaged Eulerian shear f i z  by f i J 2  in the equations for growth rate, it can 
be seen that the growth rate of the longer-wavelength cells will be reduced, but only by 
about 30 O/O. These longer-wavelength cells then dominate the flow field over timescales 
commensurate with their growth rate. Gnanadesikan (1994) demonstrates that this 
instability is important for the early stages of cell growth, but that as the cells reach the 
bottom of the layer it does not explain the transition to longer wavelength. 

Once the wavelength of the cells is known, the finite-amplitude theory outlined 
above successfully reproduces the cell amplitude, and the modification of the velocity 
profile (figures 1Oc and 1Od). This is an important result, since it means that the final 
state in the presence of cells can be deduced, in large part, by linearizing around the 
final state in the absence of cells. 

The physical picture is much the same in the presence of stratification (figure 11). 
Again the cells evolve to wavelengths which are much longer than the most unstable 
modes and have much deeper penetration over the water column. These cells replace 
small-scale diffusion as the dominant mechanism for the vertical transport of 
momentum and density over their depth of penetration. Note that the 'mixed layer' 
created by the cells has a depth of about 2, comparable to that predicted by considering 
the depth-averaged instability parameter in figure 8, but much deeper than that 
predicted by considering the local instability parameter alone. The concentrated 
forcing near the surface is able to overcome a certain amount of weak stabilizing 
stratification to drive deeply penetrating Langmuir cells. 

In the real ocean, of course, the Coriolis force plays and important role in setting the 
mean velocity profile. Despite some difference in the details, the simple non-rotating 
theory presented here may still yield useful results in some cases where Coriolis forces 
are present. In particular, Gnanadesikan (1 994) and Gnanadesikan & Weller (1995) 
demonstrate that if the Ekman depth is large compared with the mixed layer depth, the 
velocity shear upon which the cells grow is essentially identical to that in the absence 
of Coriolis force and the alongcell momentum balance is very similar. Additionally, if 
Ra,,,y (defined using the alongcell component of velocity and Stokes drift shears) is 
much larger than 1 the cells are shown to replace small-scale diffusion as the dominant 
vertical transport mechanism for velocity and density, homogenizing the alongcell 
velocity profile over the depth of penetration. 

5. Implications for mixed layer dynamics 
The theory developed here can be used to examine the circumstances under which 

mixed layers with realistic background levels of turbulence are unstable to Langmuir 
cells driven by wave-current interaction. The Mellor-Yamada 2i-level turbulence 
closure model (Mellor & Yamada 1974) with a constant turbulence length was used to 
generate viscosities in layers given various surface heat flux and wind stress. An initial 
mixed layer with a depth of 20 m was subjected to forcing for a total of 6 h, after which 
time the viscosity just below the surface was taken as a representative (though generally 
high) value for the mixed layer as a whole. For a surface stress of 0.12 Pa, 
corresponding to a wind speed of approximately 10 m s-I, the model predicts a mean 
eddy viscosity of 0.02 m2 s-l over a 20 m deep mixed layer (a reasonable value given 
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FIGURE 12. Instability to Langmuir cells of a shear flow in a 20 m deep mixed layer. The surface stress 
is 0.12 Pa (corresponding to a 10 m s-’ wind). Eddy viscosity is 0.03 m2 s-’ from a Mellor-Yamada 
model. There is no heat flux. Waves are given by a Pierson-Moskowitz spectrum. Growth rates and 
log,, of the Craik-Leibovich Rayleigh numbers are shown as a function of the root-mean-square 
wave amplitude and the period of the waves at the peak of the spectrum. ( a )  Growth rate ( x lo3) in 
s-l for cells with 10 m wavelength. ( h )  log,,(Ra,.,) for cells with 10 m wavelength. ( c )  Growth rate 
( x lo3) in s-l for cells with 40 m wavelength. ( d )  log,, (RacL)  for cells with 40 m wavelength. 

the results of Weller 1981 and Gnanadesikan 1994). The instability of such a mixed 
layer to Langmuir cells is shown in figure 12. The degree to which the layer is unstable 
to Langmuir cells is a strong function of the amplitude and peak period of the surface 
gravity waves. The profile is strongly unstable when the waves have small periods, but 
much less strongly unstable for low-period swell. This is because the Stokes drift shear 
scales as the fifth power of the peak frequency, so that small changes in the frequency 
can produce large changes in the Stokes drift shear and hence in the degree of 
instability. As the wave amplitude increases, the cells become more unstable and the 
Rayleigh number increases. The Rayleigh numbers are larger for long-wavelength 
(40 m) cells than short-wavelength (10 m) cells, indicating that these longer-wavelength 
cells would be expected to replace small-scale diffusion as the dominant transport 
mechanism. 

There is a certain danger in treating Langmuir circulations and the background 
turbulence separately. This can be seen in figure 13, which summarizes instability runs 
made for a range of heat fluxes, assuming the same wind stress and mixed layer depth 
as in figure 12 and waves given by a Pierson-Moskowitz spectrum with peak period of 
10 s. As before, the eddy viscosities are predicted using a Mellor-Yamada model which 
does not consider the effect of waves. The dependence on heat flux is rather surprising. 
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FIGURE 13. Effect of heat flux on Langmuir cell growth. Surface stress is 0.12 Pa, the layer depth is 
20 m, and the waves are given by a Pierson-Moskowitz spectrum with a peak period of 10 s. (a )  Eddy 
viscosity at 1 m from a Mellor-Yamada model as a function of heat flux. ( 6 )  Growth rate ( x lo3) in 
s-l for cells with a wavelength of 40 m. (c) Stratified Craik-Leibovich Rayleigh number for cells with 
a wavelength of 40 m. ( d )  Depth of cell penetration (defined as twice the depth of the maximum 
vertical velocity) for cells with a wavelength of 40 m. 

At low values of wave amplitude, increasing the heat flux stabilizes the water column. 
However, when the wave amplitude is larger than about 0.5 m (corresponding to a 
significant wave height of 2 m), increasing the heat flux actually increases the cell 
strength. As the surface is heated, the turbulence is suppressed, leading to larger and 
larger surface shears and strong wave-current interaction. For the layer depths shown 
here, this decrease in the turbulent mixing is more important than the increase in the 
stratification. The resulting cells are surface-trapped but their depth of penetration 
increases as the wave height increases (figure 13d). The picture which emerges is one 
in which the Langmuir cell energy is trapped in a narrow surface layer. When the 
surface is strongly cooled, on the other hand, the increase in turbulent damping is more 
important than the buoyant forcing on the cells, and the profile predicted by the 
Mellor-Yamada model becomes stable. 

It should be pointed out that the physical scenario in figure 13 is deceptive in terms 
of predicting Langmuir circulations in the real ocean for the following reasons. 

ti) In the real ocean the Coriolis force plays a critical role in reducing instability as 
the mixing becomes weaker (Gnanadesikan & Weller 1995). As the mixing becomes 
very weak, interactions between the Stokes drift and the Coriolis force produce and 
upwind Eulerian shear which reduces the strength of the instability. 

(ii) The Mellor-Yamada model implicitly includes the effects of buoyant convection 
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but not wave-current interaction. As a result, Langmuir cells driven by surface cooling 
are already included in the Mellor-Yamada model, which will therefore predict overly 
weak Langmuir cells when the surface cooling is strong. This fact points out the need 
to consider turbulence and Langmuir cell strength in parallel. 

A final interesting implication of the finite-amplitude results is that one can predict 
the amplitude of the vorticity associated with the cells. Assuming cells given by 
truncation T1, the vorticity at equilibrium is just 

w = 2(Y2,,Sl -y:iffl)l’z. (41) 

Then if Ra,,, is large, the Craik-Leibovich instability parameter ycLs scales as the 
frequency of overturning associated with the cells. This has implications for a number 
of problems. 

(i) Creation and penetration of bubble clouds: Langmuir cells have long been 
suspected to be responsible for the persistent bubble clouds which have been suggested 
as the principal source of acoustic backscatter (Thorpe 1984a, b). The depth of 
penetration of such clouds most probably scales as the depth at which the mixing rate 
is equal to the consumption rate of the bubbles (Gnanadesikan 1995). 

(ii) Velocity structures : the fast mixing times implied by (40) also have implications 
for the mean Ekman spiral. If Ra,,, > 1 the mean Ekman spiral predicted by 
assuming locally generated isotropic turbulence to drive the mixing will be unstable to 
Langmuir cells and the cells will homogenize the mixed layer interior. Gnanadesikan 
& Weller (1995) explore this issue using data obtained during the Mixed Layer 
Dynamics Experiment. 

(iii) Testing the wave-current interaction mechanism in the field : the crosscell shear 
associated with the cells scales as the vorticity which in turn scales as the 
Craik-Leibovich instability parameter. Insofar as the spatial scale of the cells is known, 
the level of the cross-cell shear provides a measure of what processes are responsible 
for forcing the cells. If Langmuir cells are in fact driven by wave-current interaction, 
the spatially varying shears will reflect this scaling. Recent work (Gnanadesikan 1994) 
argues that this relationship does in fact hold for two field experiments. 

6. Conclusions 
This paper has derived a condition for Langmuir cells driven by wave-current 

interaction to be capable of replacing small-scale diffusion as the dominant transport 
mechanism for velocity and density. It has shown that this condition is met under some 
reasonable circumstances in the absence of Coriolis forces. The rate of mixing caused 
by finite-amplitude cells is proportional to the depth-averaged forcing, and as such can 
be quite large. The cells are capable of penetrating to depths much larger than those 
associated with the forcing mechanism, supporting the contention that they are in fact 
the dominant mixing mechanism in oceanic mixed layers. 

This paper raises a number of issues which will be important in furthering research 
into Langmuir circulations and their effect on the upper ocean. These include the 
following. 

(i) The nature of the interaction between the cells and the stratified thermocline. The 
bottom boundary layer used in these runs is highly idealized and differs in its treatment 
of density and velocity. This plays an important role in setting Ra,.,, for long- 
wavelength cells in a way which may not be a realistic representation of the oceanic 
thermocline. Cox & Leibovich (1993) considered the effects of a modified boundary 
condition on the fastest mode over all wavelengths. However, as shown in this paper, 
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the fastest-growing mode may not feel the bottom, and it may be more realistic to 
consider the effect on the cells with the largest Craik-Leibovich Rayleigh number. 

(ii) The dynamics which govern the equilibrium spatial scales of the cells. The two- 
dimensional results shown here predict cells which are up to eight times broader than 
the mixed layer depth. Additionally, the range of cell scales seen in the field is not 
reproduced by these models. Gnanadesikan (1994) noted that Coriolis forces could 
interrupt the transfer of energy to larger and larger spatial scales. Thorpe (1992) 
showed that three-dimensional vortex merging could also play a role in determining the 
cell structure. The relative importance of these effects is not well understood. 

(iii) The effects of vertically variable mixing. The results here approximate the 
mixing using a constant eddy viscosity. Allowing the eddy viscosity to depend on the 
local shear (as is done in large-eddy simulations) will allow a better determination of 
the relative roles of Langmuir cells and small-scale turbulence in stirring the mixed 
layer. 

(iv) The stability of the finite-amplitude solutions. We have not addressed the 
question here of whether the finite-amplitude solutions are stable. Leibovich et al. 
(1 989) showed that under certain conditions, steady Langmuir cells would be replaced 
by travelling wave solutions. This does not appear to have occurred for any of the cases 
considered here, and it is unclear whether such effects are due to boundary conditions, 
or whether it is simply a matter of going to larger values of Craik-Leibovich Rayleigh 
number. 
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